Once upon a time there was a man named Alexander Graham Bell and he
was a Scottish-born scientist, inventor, engineer and innovator who is credited with patenting the first practical telephone.
Bell's father, grandfather, and brother had all been associated with work on elocution and speech, and both his mother and wife were deaf, profoundly influencing Bell's life's work. His research on hearing and speech further led him to experiment with hearing devices which eventually culminated in Bell being awarded the first U.S. patent for the telephone in 1876. Bell considered his most famous invention an intrusion on his real work as a scientist and refused to have a telephone in his study.
Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. Although Bell was not one of the 33 founders of the National Geographic Society, he had a strong influence on the magazine while serving as the second president from January 7, 1898, until 1903.
Alexander Bell was born in Edinburgh, Scotland, on March 3, 1847. The family home was at 16 South Charlotte Street, and has a stone inscription marking it as Alexander Graham Bell's birthplace. He had two brothers: Melville James Bell (1845–70) and Edward Charles Bell (1848–67), both of whom would die of tuberculosis. His father was Professor Alexander Melville Bell, a phonetician, and his mother was Eliza Grace (née Symonds). Born as just "Alexander Bell", at age 10 he made a plea to his father to have a middle name like his two brothers. For his 11th birthday, his father acquiesced and allowed him to adopt the name "Graham", chosen out of respect for Alexander Graham, a Canadian being treated by his father who had become a family friend. To close relatives and friends he remained "Aleck".
As a child, young Bell displayed a natural curiosity about his world, resulting in gathering botanical specimens as well as experimenting even at an early age. His best friend was Ben Herdman, a neighbour whose family operated a flour mill, the scene of many forays. Young Bell asked what needed to be done at the mill. He was told wheat had to be dehusked through a laborious process and at the age of 12, Bell built a homemade device that combined rotating paddles with sets of nail brushes, creating a simple dehusking machine that was put into operation and used steadily for a number of years. In return, Ben's father John Herdman gave both boys the run of a small workshop in which to "invent".
From his early years, Bell showed a sensitive nature and a talent for art, poetry, and music that was encouraged by his mother. With no formal training, he mastered the piano and became the family's pianist.Despite being normally quiet and introspective, he reveled in mimicry and "voice tricks" akin to ventriloquism that continually entertained family guests during their occasional visits. Bell was also deeply affected by his mother's gradual deafness (she began to lose her hearing when he was 12), and learned a manual finger language so he could sit at her side and tap out silently the conversations swirling around the family parlour. He also developed a technique of speaking in clear, modulated tones directly into his mother's forehead wherein she would hear him with reasonable clarity. Bell's preoccupation with his mother's deafness led him to study acoustics.
His family was long associated with the teaching of elocution: his grandfather, Alexander Bell, in London, his uncle in Dublin, and his father, in Edinburgh, were all elocutionists. His father published a variety of works on the subject, several of which are still well known, especially his The Standard Elocutionist (1860),which appeared in Edinburgh in 1868. The Standard Elocutionist appeared in 168 British editions and sold over a quarter of a million copies in the United States alone. In this treatise, his father explains his methods of how to instruct deaf-mutes (as they were then known) to articulate words and read other people's lip movements to decipher meaning. Bell's father taught him and his brothers not only to write Visible Speech but to identify any symbol and its accompanying sound. Bell became so proficient that he became a part of his father's public demonstrations and astounded audiences with his abilities. He could decipher Visible Speech representing virtually every language, including Latin, Scottish Gaelic, and even Sanskrit, accurately reciting written tracts without any prior knowledge of their pronunciation.
As a young child, Bell, like his brothers, received his early schooling at home from his father. At an early age, he was enrolled at the Royal High School, Edinburgh, Scotland, which he left at age 15, completing only the first four forms. His school record was undistinguished, marked by absenteeism and lacklustre grades. His main interest remained in the sciences, especially biology, while he treated other school subjects with indifference, to the dismay of his demanding father. Upon leaving school, Bell travelled to London to live with his grandfather, Alexander Bell. During the year he spent with his grandfather, a love of learning was born, with long hours spent in serious discussion and study. The elder Bell took great efforts to have his young pupil learn to speak clearly and with conviction, the attributes that his pupil would need to become a teacher himself. At age 16, Bell secured a position as a "pupil-teacher" of elocution and music, in Weston House Academy, at Elgin, Moray, Scotland. Although he was enrolled as a student in Latin and Greek, he instructed classes himself in return for board and £10 per session.The following year, he attended the University of Edinburgh; joining his older brother Melville who had enrolled there the previous year. In 1868, not long before he departed for Canada with his family, Bell completed his matriculation exams and was accepted for admission to the University of London
.By 1874, Bell's initial work on the harmonic telegraph had entered a formative stage, with progress made both at his new Boston "laboratory" (a rented facility) and at his family home in Canada a big success.While working that summer in Brantford, Bell experimented with a "phonautograph", a pen-like machine that could draw shapes of sound waves on smoked glass by tracing their vibrations. Bell thought it might be possible to generate undulating electrical currents that corresponded to sound waves.Bell also thought that multiple metal reeds tuned to different frequencies like a harp would be able to convert the undulating currents back into sound. But he had no working model to demonstrate the feasibility of these ideas.
In 1874, telegraph message traffic was rapidly expanding and in the words of Western Union President William Orton, had become "the nervous system of commerce". Orton had contracted with inventors Thomas Edison and Elisha Gray to find a way to send multiple telegraph messages on each telegraph line to avoid the great cost of constructing new lines. When Bell mentioned to Gardiner Hubbard and Thomas Sanders that he was working on a method of sending multiple tones on a telegraph wire using a multi-reed device, the two wealthy patrons began to financially support Bell's experiments. Patent matters would be handled by Hubbard's patent attorney, Anthony Pollok.
In March 1875, Bell and Pollok visited the famous scientist Joseph Henry, who was then director of the Smithsonian Institution, and asked Henry's advice on the electrical multi-reed apparatus that Bell hoped would transmit the human voice by telegraph. Henry replied that Bell had "the germ of a great invention". When Bell said that he did not have the necessary knowledge, Henry replied, "Get it!" That declaration greatly encouraged Bell to keep trying, even though he did not have the equipment needed to continue his experiments, nor the ability to create a working model of his ideas. However, a chance meeting in 1874 between Bell and Thomas A. Watson, an experienced electrical designer and mechanic at the electrical machine shop of Charles Williams, changed all that.
With financial support from Sanders and Hubbard, Bell hired Thomas Watson as his assistant, and the two of them experimented with acoustic telegraphy. On June 2, 1875, Watson accidentally plucked one of the reeds and Bell, at the receiving end of the wire, heard the overtones of the reed; overtones that would be necessary for transmitting speech. That demonstrated to Bell that only one reed or armature was necessary, not multiple reeds. This led to the "gallows" sound-powered telephone, which could transmit indistinct, voice-like sounds, but not clear speech.
Although Alexander Graham Bell is most often associated with the invention of the telephone, his interests were extremely varied. According to one of his biographers, Charlotte Gray, Bell's work ranged "unfettered across the scientific landscape" and he often went to bed voraciously reading the Encyclopædia Britannica, scouring it for new areas of interest. The range of Bell's inventive genius is represented only in part by the 18 patents granted in his name alone and the 12 he shared with his collaborators. These included 14 for the telephone and telegraph, four for the photophone, one for the phonograph, five for aerial vehicles, four for "hydroairplanes" and two for selenium cells. Bell's inventions spanned a wide range of interests and included a metal jacket to assist in breathing, the audiometer to detect minor hearing problems, a device to locate icebergs, investigations on how to separate salt from seawater, and work on finding alternative fuels.
Bell worked extensively in medical research and invented techniques for teaching speech to the deaf. During his Volta Laboratory period, Bell and his associates considered impressing a magnetic field on a record as a means of reproducing sound. Although the trio briefly experimented with the concept, they could not develop a workable prototype. They abandoned the idea, never realizing they had glimpsed a basic principle which would one day find its application in the tape recorder, the hard disc and floppy disc drive and other magnetic media.
Bell's own home used a primitive form of air conditioning, in which fans blew currents of air across great blocks of ice. He also anticipated modern concerns with fuel shortages and industrial pollution. Methane gas, he reasoned, could be produced from the waste of farms and factories. At his Canadian estate in Nova Scotia, he experimented with composting toilets and devices to capture water from the atmosphere. In a magazine interview published shortly before his death, he reflected on the possibility of using solar panels to heat houses.
Bell died of complications arising from diabetes on August 2, 1922, at his private estate in Cape Brenton, Nova Scotia, at age 75. Bell had also been afflicted with pernicious anemia. His last view of the land he had inhabited was by moonlight on his mountain estate at 2:00 a.m. While tending to him after his long illness, Mabel, his wife, whispered, "Don't leave me." By way of reply, Bell signed "no...", lost consciousness, and died shortly after.
On learning of Bell's death, the Canadian Prime Minister, Mackenzie King, cabled Mrs. Bell, saying:
Dr. Alexander Graham Bell was buried atop Beinn Bhreagh mountain, on his estate where he had resided increasingly for the last 35 years of his life, overlooking Bras d'Or Lake. He was survived by his wife Mabel, his two daughters, Elsie May and Marian, and nine of his grandchildren.
With this known and so much more to learn about Alexander Graham Bell i would have to say he is on my list for one of the most notorious inventors of all time.
was a Scottish-born scientist, inventor, engineer and innovator who is credited with patenting the first practical telephone.
Bell's father, grandfather, and brother had all been associated with work on elocution and speech, and both his mother and wife were deaf, profoundly influencing Bell's life's work. His research on hearing and speech further led him to experiment with hearing devices which eventually culminated in Bell being awarded the first U.S. patent for the telephone in 1876. Bell considered his most famous invention an intrusion on his real work as a scientist and refused to have a telephone in his study.
Many other inventions marked Bell's later life, including groundbreaking work in optical telecommunications, hydrofoils and aeronautics. Although Bell was not one of the 33 founders of the National Geographic Society, he had a strong influence on the magazine while serving as the second president from January 7, 1898, until 1903.
Alexander Bell was born in Edinburgh, Scotland, on March 3, 1847. The family home was at 16 South Charlotte Street, and has a stone inscription marking it as Alexander Graham Bell's birthplace. He had two brothers: Melville James Bell (1845–70) and Edward Charles Bell (1848–67), both of whom would die of tuberculosis. His father was Professor Alexander Melville Bell, a phonetician, and his mother was Eliza Grace (née Symonds). Born as just "Alexander Bell", at age 10 he made a plea to his father to have a middle name like his two brothers. For his 11th birthday, his father acquiesced and allowed him to adopt the name "Graham", chosen out of respect for Alexander Graham, a Canadian being treated by his father who had become a family friend. To close relatives and friends he remained "Aleck".
As a child, young Bell displayed a natural curiosity about his world, resulting in gathering botanical specimens as well as experimenting even at an early age. His best friend was Ben Herdman, a neighbour whose family operated a flour mill, the scene of many forays. Young Bell asked what needed to be done at the mill. He was told wheat had to be dehusked through a laborious process and at the age of 12, Bell built a homemade device that combined rotating paddles with sets of nail brushes, creating a simple dehusking machine that was put into operation and used steadily for a number of years. In return, Ben's father John Herdman gave both boys the run of a small workshop in which to "invent".
From his early years, Bell showed a sensitive nature and a talent for art, poetry, and music that was encouraged by his mother. With no formal training, he mastered the piano and became the family's pianist.Despite being normally quiet and introspective, he reveled in mimicry and "voice tricks" akin to ventriloquism that continually entertained family guests during their occasional visits. Bell was also deeply affected by his mother's gradual deafness (she began to lose her hearing when he was 12), and learned a manual finger language so he could sit at her side and tap out silently the conversations swirling around the family parlour. He also developed a technique of speaking in clear, modulated tones directly into his mother's forehead wherein she would hear him with reasonable clarity. Bell's preoccupation with his mother's deafness led him to study acoustics.
His family was long associated with the teaching of elocution: his grandfather, Alexander Bell, in London, his uncle in Dublin, and his father, in Edinburgh, were all elocutionists. His father published a variety of works on the subject, several of which are still well known, especially his The Standard Elocutionist (1860),which appeared in Edinburgh in 1868. The Standard Elocutionist appeared in 168 British editions and sold over a quarter of a million copies in the United States alone. In this treatise, his father explains his methods of how to instruct deaf-mutes (as they were then known) to articulate words and read other people's lip movements to decipher meaning. Bell's father taught him and his brothers not only to write Visible Speech but to identify any symbol and its accompanying sound. Bell became so proficient that he became a part of his father's public demonstrations and astounded audiences with his abilities. He could decipher Visible Speech representing virtually every language, including Latin, Scottish Gaelic, and even Sanskrit, accurately reciting written tracts without any prior knowledge of their pronunciation.
As a young child, Bell, like his brothers, received his early schooling at home from his father. At an early age, he was enrolled at the Royal High School, Edinburgh, Scotland, which he left at age 15, completing only the first four forms. His school record was undistinguished, marked by absenteeism and lacklustre grades. His main interest remained in the sciences, especially biology, while he treated other school subjects with indifference, to the dismay of his demanding father. Upon leaving school, Bell travelled to London to live with his grandfather, Alexander Bell. During the year he spent with his grandfather, a love of learning was born, with long hours spent in serious discussion and study. The elder Bell took great efforts to have his young pupil learn to speak clearly and with conviction, the attributes that his pupil would need to become a teacher himself. At age 16, Bell secured a position as a "pupil-teacher" of elocution and music, in Weston House Academy, at Elgin, Moray, Scotland. Although he was enrolled as a student in Latin and Greek, he instructed classes himself in return for board and £10 per session.The following year, he attended the University of Edinburgh; joining his older brother Melville who had enrolled there the previous year. In 1868, not long before he departed for Canada with his family, Bell completed his matriculation exams and was accepted for admission to the University of London
.By 1874, Bell's initial work on the harmonic telegraph had entered a formative stage, with progress made both at his new Boston "laboratory" (a rented facility) and at his family home in Canada a big success.While working that summer in Brantford, Bell experimented with a "phonautograph", a pen-like machine that could draw shapes of sound waves on smoked glass by tracing their vibrations. Bell thought it might be possible to generate undulating electrical currents that corresponded to sound waves.Bell also thought that multiple metal reeds tuned to different frequencies like a harp would be able to convert the undulating currents back into sound. But he had no working model to demonstrate the feasibility of these ideas.
In 1874, telegraph message traffic was rapidly expanding and in the words of Western Union President William Orton, had become "the nervous system of commerce". Orton had contracted with inventors Thomas Edison and Elisha Gray to find a way to send multiple telegraph messages on each telegraph line to avoid the great cost of constructing new lines. When Bell mentioned to Gardiner Hubbard and Thomas Sanders that he was working on a method of sending multiple tones on a telegraph wire using a multi-reed device, the two wealthy patrons began to financially support Bell's experiments. Patent matters would be handled by Hubbard's patent attorney, Anthony Pollok.
In March 1875, Bell and Pollok visited the famous scientist Joseph Henry, who was then director of the Smithsonian Institution, and asked Henry's advice on the electrical multi-reed apparatus that Bell hoped would transmit the human voice by telegraph. Henry replied that Bell had "the germ of a great invention". When Bell said that he did not have the necessary knowledge, Henry replied, "Get it!" That declaration greatly encouraged Bell to keep trying, even though he did not have the equipment needed to continue his experiments, nor the ability to create a working model of his ideas. However, a chance meeting in 1874 between Bell and Thomas A. Watson, an experienced electrical designer and mechanic at the electrical machine shop of Charles Williams, changed all that.
With financial support from Sanders and Hubbard, Bell hired Thomas Watson as his assistant, and the two of them experimented with acoustic telegraphy. On June 2, 1875, Watson accidentally plucked one of the reeds and Bell, at the receiving end of the wire, heard the overtones of the reed; overtones that would be necessary for transmitting speech. That demonstrated to Bell that only one reed or armature was necessary, not multiple reeds. This led to the "gallows" sound-powered telephone, which could transmit indistinct, voice-like sounds, but not clear speech.
Although Alexander Graham Bell is most often associated with the invention of the telephone, his interests were extremely varied. According to one of his biographers, Charlotte Gray, Bell's work ranged "unfettered across the scientific landscape" and he often went to bed voraciously reading the Encyclopædia Britannica, scouring it for new areas of interest. The range of Bell's inventive genius is represented only in part by the 18 patents granted in his name alone and the 12 he shared with his collaborators. These included 14 for the telephone and telegraph, four for the photophone, one for the phonograph, five for aerial vehicles, four for "hydroairplanes" and two for selenium cells. Bell's inventions spanned a wide range of interests and included a metal jacket to assist in breathing, the audiometer to detect minor hearing problems, a device to locate icebergs, investigations on how to separate salt from seawater, and work on finding alternative fuels.
Bell worked extensively in medical research and invented techniques for teaching speech to the deaf. During his Volta Laboratory period, Bell and his associates considered impressing a magnetic field on a record as a means of reproducing sound. Although the trio briefly experimented with the concept, they could not develop a workable prototype. They abandoned the idea, never realizing they had glimpsed a basic principle which would one day find its application in the tape recorder, the hard disc and floppy disc drive and other magnetic media.
Bell's own home used a primitive form of air conditioning, in which fans blew currents of air across great blocks of ice. He also anticipated modern concerns with fuel shortages and industrial pollution. Methane gas, he reasoned, could be produced from the waste of farms and factories. At his Canadian estate in Nova Scotia, he experimented with composting toilets and devices to capture water from the atmosphere. In a magazine interview published shortly before his death, he reflected on the possibility of using solar panels to heat houses.
Bell died of complications arising from diabetes on August 2, 1922, at his private estate in Cape Brenton, Nova Scotia, at age 75. Bell had also been afflicted with pernicious anemia. His last view of the land he had inhabited was by moonlight on his mountain estate at 2:00 a.m. While tending to him after his long illness, Mabel, his wife, whispered, "Don't leave me." By way of reply, Bell signed "no...", lost consciousness, and died shortly after.
On learning of Bell's death, the Canadian Prime Minister, Mackenzie King, cabled Mrs. Bell, saying:
My colleagues in the Government join with me in expressing to you our sense of the world's loss in the death of your distinguished husband. It will ever be a source of pride to our country that the great invention, with which his name is immortally associated, is a part of its history. On the behalf of the citizens of Canada, may I extend to you an expression of our combined gratitude and sympathy.Bell's coffin was constructed of Beinn Bhreagh pine by his laboratory staff, lined with the same red silk fabric used in his tetrahedral kite experiments. To help celebrate his life, his wife asked guests not to wear black (the traditional funeral color) while attending his service, during which soloist Jean MacDonald sang a verse of Robert Louis Stevenson's "Requiem":
- Under a wide and starry sky,
- Dig the grave and let me lie.
- Glad did I live and gladly die
- And I laid me down with a will.
Dr. Alexander Graham Bell was buried atop Beinn Bhreagh mountain, on his estate where he had resided increasingly for the last 35 years of his life, overlooking Bras d'Or Lake. He was survived by his wife Mabel, his two daughters, Elsie May and Marian, and nine of his grandchildren.
With this known and so much more to learn about Alexander Graham Bell i would have to say he is on my list for one of the most notorious inventors of all time.
No comments:
Post a Comment